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Abstract
We address the problem of transmitting states belonging to finite dimensional
Hilbert space through a quantum channel associated with a larger (even infinite
dimensional) Hilbert space.

PACS numbers: 03.65.−w, 03.65.Ta

1. Introduction

By a quantum channel is intended [1, 2] a completely positive and trace-preserving linear map
� : σ(H) → σ(H), where σ(H) is a set of states in a Hilbert space H with dim H = n � +∞.
Even for a finite dimension n < +∞ there is a number of difficult problems concerning the
construction of optimal transmission of the information through a quantum channel. The
infinite dimensional case we are especially interested in has additional particular features [3].
In the present paper, we discuss how a set of states on the finite dimensional Hilbert space
can be transmitted through a quantum channel associated with the infinite dimensional Hilbert
space. In particular, we investigate whether encoding a qudit in a larger space could be useful
to better protect it from the channel (noise) action without resorting to any particular decoding
(recovery) scheme at the output.

The paper is organized as follows. In section 2 the notion of subchannel is introduced.
In section 3 we study the phase and the amplitude damping channels within this context.
Section 4 is for conclusions.

2. Invariant hulls and subchannels

Given a subspace K ⊂ H, dimK = d < n, we denote by σ(K) the convex envelope of pure
states |ξ 〉〈ξ | ⊂ σ(H), ξ ∈ K . One can define a linear map � : σ(K) → σ(K) by the formula

Tr(x2�(x1)) = Tr(x2�(x1)), xi ∈ σ(K), i = 1, 2. (1)
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Substituting x1 = |ξ 〉〈ξ | into equation (1) we obtain 〈ξ |�(x2)|ξ 〉 = 〈ξ |�(x2)|ξ 〉. It follows
that �(x) = PK�(x)PK , where PK is a projection on the subspace K and x ∈ σ(K). Hence
� is a completely positive map. If � is unital, i.e. it preserves the chaotic state �

(
1
n
I
) = 1

n
I

(with I the identity in H), then � satisfies the property �
(

1
d
PK

) = 1
d
PK .

Consider the set of states

ImK� ≡ {x ∈ σ(H) | ∃y ∈ σ(K) : �(y) = x}. (2)

If ImK� ⊂ σ(K), then we shall call σ(K) an invariant hull of the channel �. In that case we
get � = �|σ(K), where �|σ(K) stands for the restriction of � to inputs in σ(K). Because it
implies that � is trace-preserving, we shall call � a subchannel of �.

We denote by B(H) the algebra of all bounded operators in H. Due to the Kraus
decomposition4 for the channel � there exist a set of operators E = {Ei ∈ B(H), 1 �
i � k � n2} such that

�(x) =
k∑

i=1

EixE∗
i , x ∈ σ(H). (3)

where E∗
i stands for the adjoint of Ei .

Example 1. Consider the phase damping channel defined with n = +∞ through the
decomposition

�(x) =
+∞∑
i=0

EixE∗
i , (4)

where

Ei =
∞∑

k=0

[k
√−2 ln η]i√

i!
[η]k

2 |k〉〈k|. (5)

Here |k〉, k = 0, 1, 2, . . . , are Fock states and the parameter η describes the damping (it can be
written as η = e−γ t with γ being the damping rate and t the transmission time). The property
�(|k〉〈k|) = |k〉〈k| guarantees that any subspace K generated by the vectors |k0〉, . . . , |kd−1〉
determines the invariant hull of the phase damping channel.

Example 2. Consider the amplitude damping channel defined with n = +∞ through the
decomposition

�(x) =
+∞∑
i=0

EixE∗
i , (6)

where

Ei =
+∞∑
k=i

√
Ci

k[η](k−i)/2[1 − η]i/2|k − i〉〈k|, (7)

with

Ci
k = k!

(k − i)!i!
(8)

Here again |k〉, k = 0, 1, 2, . . . , are Fock states and the parameter η describes the damping.
For a given dimension d there exists the invariant hull for �. In fact, if K is generated by a
collection of vectors |0〉, . . . , |d − 1〉, then σ(K) is an invariant hull for �.

4 This terminology arose because of Kraus’ book [4] where the decomposition appeared; however, it was first
proposed in [5].
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Example 3. Consider the depolarizing channel defined as �(x) = px + (1 − p) 1
n
I , with

0 � p � 1. Note that if K �= H , then the chaotic state 1
n
I /∈ σ(K). Hence the depolarizing

channel has no invariant hull if d < n because ImK� /∈ σ(K) under this condition.

For any channel � in the Hilbert space H one can define the conjugate unital completely
positive map �∗ as follows:

Tr(x1�
∗(x2)) = Tr(�(x1)x2), x1 ∈ σ(H), x2 ∈ B(H). (9)

Because � is trace-preserving, we obtain that �∗ is unital. Moreover, to check that the map
� is trace-preserving it is sufficient to look whether �∗ is unital or not. Equation (3) allows
us to extend � from σ(H) to B(H). For the conjugate map �∗ we get

�∗(x) =
k∑

i=1

E∗
i xEi, x ∈ B(H). (10)

Now let �(x) = PK�(x)PK, x ∈ σ(K). The map � is a subchannel of � iff it is
trace-preserving. To fulfil this property it needs that �∗ is unital in the sense �∗(PK) = PK .
On the other hand, it takes place iff

PK�∗(PK)PK = PK. (11)

Hence, the problem of searching for subchannels of � is equivalent to the problem of describing
the algebra of fixed elements for the map PK�∗(·)PK .

If � is a subchannel of � and dimK = 2, then we shall say that � is a qubit subchannel
of �. Let

|ψ〉 = cos

(
θ

2

)
|ψ0〉 + eiφ sin

(
θ

2

)
|ψ1〉, ρ = |ψ〉〈ψ |, (12)

with |ψ0〉, |ψ1〉 spanning K. A way to see how faithfully the state ρ is transmitted through the
channel � is to consider the fidelity distance [2]

f (θ, φ) = Tr(ρ,�(ρ)) ≡ Tr

{√√
ρ�(ρ)

√
ρ

}
= 〈ψ |�(ρ)|ψ〉, (13)

and then average overall the Bloch sphere, to get

F = 1

4π

∫ 2π

0
dφ

∫ π

0
dθ sin(θ)f (θ, φ). (14)

It turns out that the fidelity of the channel � is equal to the fidelity of its qubit subchannel �

(with the subspace K generated by the vectors |ψ0〉 and |ψ1〉). Following this way, we can
conclude that to estimate how well a channel � preserves a qubit state, one should consider
all qubit subchannels of �.

3. Applications

3.1. The phase damping channel

Suppose that � represents the phase damping channel defined in example 1 of section 2. The
projectors |k〉〈k|, k = 0, 1, 2, . . . , belong to the algebra of fixed elements of �. Hence, any
subspace K, being a linear envelope of the vectors |k〉 and |s〉, k �= s, generates the unital qubit
subchannel of �. Note that as a consequence of equations (4) and (5) we have

�(|k〉〈s|) = η(k−s)2 |k〉〈s|. (15)
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Thus, by referring to equation (12) with |k〉 ≡ |ψ0〉 and |s〉 ≡ |ψ1〉, we get

Tr(ρ,�(ρ)) = cos4

(
θ

2

)
+ sin4

(
θ

2

)
+ 2η(k−s)2

cos2

(
θ

2

)
sin2

(
θ

2

)
; (16)

hence the fidelity

F = 2

3
+

η(k−s)2

3
. (17)

The maximum is achieved for k, s contiguous natural numbers.

3.2. The amplitude damping channel

Suppose that � represents the amplitude damping channel defined in example 2 of section 2.
Take two integer numbers 0 � k � s; then as a consequence of equations (6)–(8), we have

�(|k〉〈s|) =
k∑

i=0

√
Ci

kC
i
sη

k+s
2 −i (1 − η)i |k − i〉〈s − i|. (18)

If x = ∑+∞
k=0 xkl|k〉〈l|, then for y = �(x) = ∑+∞

k=0

∑+∞
l=0 ykl|k〉〈l| we obtain

ykl =
+∞∑
i=0

√
Ci

k+iC
i
l+iη

k+l
2 (1 − η)ixk+il+i . (19)

It follows from equation (19) that �(x) = x iff x = const|0〉〈0|. Hence, there is no unital
qubit subchannel of the amplitude damping channel. In fact, if the subspace K generates an
invariant qubit of �, then the subchannel � = �|σ(K) is unital only if �(PK) = PK , where
PK is a two-dimensional projection on K.

Example 4. Given a complex number α ∈ C one can define the coherent state by the formula

|α〉 = e− |α|2
2

+∞∑
k=0

αk

√
k!

|k〉. (20)

It follows from equations (18) and (20) that, for any α, β ∈ C, we get

�(|α〉〈β|) = |√ηα〉〈√ηβ| exp

[
(1 − η)

(
−|α|2 + |β|2

2
+ αβ∗

)]
. (21)

In particular,

�(|α〉〈α|) = |√ηα〉〈√ηα| (22)

for any coherent state |α〉〈α|. Equation (22) implies that the Schrödinger cat states
|ψ±〉 = N±(|α〉 ± |−α〉) do not form an invariant qubit for �.

Quite generally we can consider the qubit subchannel � of the amplitude damping �

generated by the vectors |ψ0〉, |ψ1〉 (basis for the qubit subspace K) given by

|ψ0〉 =
+∞∑
n=0

cn|n〉, |ψ1〉 =
+∞∑
n=0

dn|n〉. (23)

The conditions
+∞∑
n=0

|cn|2 = 1,

+∞∑
n=0

|dn|2 = 1 (24)
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and
+∞∑
n=0

cndn = 0 (25)

ensure the normalization of |ψ0〉 and |ψ1〉 and their orthogonality. Then, we consider a
generic qubit state as in equation (12). Note that the completely positive map � = �|σ(K) is
a non-unital qubit subchannel of � at least if c0 = 1 and d1 = 1.

From equation (14) we get the fidelity as

F = 1

6

+∞∑
k=0

+∞∑
n,m=k

√
Ck

nC
k
m[η](n+m−2k)/2[1 − η]k/2[cncm(dm−kdn−k + 2cm−kcn−k)

+ dndm(cm−kcn−k + 2dm−kdn−k) + dndn−kcmcm−k + cncn−kdmdm−k]. (26)

Now we should maximize the fidelity overall possible choices of {cn} and {dn}. Clearly, there
are no two simultaneous and orthogonal eigenstates of �; hence the maximum of F cannot
be 1.

If we use only the first two vectors |0〉 and |1〉 to parametrize the qubit, then any choice of
c0, c1, d0, d1 obeying the orthogonality condition (25) gives us a correctly defined non-unital
qubit subchannel � = �|σ(K). In that case, the fidelity results,

F = 1

2
+

η

6
+

√
η

3
, (27)

and it does not depend on the choice of c0, c1, d0, d1.
One step ahead is to parametrize the qubit by the first three vectors |0〉, |1〉, |2〉 as

|ψ0〉 = sin α cos β|0〉 + sin α sin β|1〉 + cos α|2〉, (28)

|ψ1〉 = sin γ cos δ|0〉 + sin γ sin δ|1〉 + cos γ |2〉, (29)

with the condition

sin α cos β sin γ cos δ + sin α sin β sin γ sin δ + cos α cos γ = 0. (30)

Note that we have skipped all relative phases because of the symmetry of amplitude damping
channel action. So, in practice, we only deal with three free parameters, α, β, γ . In that case,
the fidelity is upper bounded by equation (27) and such a bound is achieved with α = γ = π

2
and independently of β. The same takes place when parametrizing the qubit with more than
three states.

Thus, it clearly results that the fidelity is optimized by encoding the qubit into the lowest
two Fock states of the Hilbert space (namely |0〉 and |1〉). This is in agreement with the
physical arguments based on energy (amplitude) damping. We conjecture that such a result
can be extended from qubit to qudit subchannels. That is, the optimal (in terms of fidelity)
way to transmit a qudit through an (n � d)-dimensional amplitude damping channel would
be to encode it into the lowest (in terms of energy) d orthogonal states |0〉, |1〉, . . . , |d − 1〉.

4. Conclusion

We have formally addressed the problem of transmitting qudits through larger quantum
channels by introducing the concepts of invariant hulls and subchannels. We have considered
qudits encoded in the larger space of the channel without resorting to any particular decoding
(recovery) scheme at the output. After applying these arguments to specific examples, it
comes out that to send a qubit through an infinite dimensional phase damping channel the best
would be to encode it into two contiguous Fock states, while to send a qubit through an infinite
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dimensional amplitude damping channel the best would be to encode it into the two lowest
Fock states. Although these results are derived from an information theoretic approach, they
are in agreement with those coming from physical arguments. These results can be generalized
to qudits.

Moreover, from the presented examples, it turns out that transmitting qudits in a channel
of dimension greater than d (even infinity) does not allow for a better fidelity, with respect
to the case of a channel of dimension d. Nevertheless, we believe that the extra space could
be profitably exploited with suitable decoding, recovery procedures (see also [6]). From now
we may argue that they cannot simply be completely positive trace-preserving maps operating
at the output of the channel as these are not able to decrease the distance between input and
output states. Some possibilities will be addressed in future works.
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